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ON THE STABILITY AND CONVERGENCE OF HIGHER-ORDER 
MIXED FINITE ELEMENT METHODS FOR 

SECOND-ORDER ELLIPTIC PROBLEMS 

MANIL SURI 

ABSTRACT. We investigate the use of higher-order mixed methods for second- 
order elliptic problems by establishing refined stability and convergence esti- 
mates which take into account both the mesh size h and polynomial degree p . 
Our estimates yield asymptotic convergence rates for the p- and h - p-versions 
of the finite element method. They also describe more accurately than pre- 
viously proved estimates the increased rate of convergence expected when the 
h-version is used with higher-order polynomials. For our analysis, we choose the 
Raviart-Thomas and the Brezzi-Douglas-Marini elements and establish optimal 
rates of convergence in both h and p (up to arbitrary E > 0). 

1. INTRODUCTION 

There have been several variational mixed formulations proposed for the so- 
lution of second-order elliptic problems like the Poisson equation. One such 
formulation involves writing the equation as a first-order system with both the 
displacement and velocity as unknowns. The Raviart-Thomas (RT) elements 
introduced in [14] provide a finite element discretization for this mixed varia- 
tional principle and have been defined for arbitrary polynomial degree p . These 
elements, which are particularly useful when the velocity is the main physical 
quantity of interest, have received much attention in the literature (see, e.g., 
[12] and the references contained therein). All analysis carried out so far in 
connection with these elements concentrates on the h-version of the finite ele- 
ment method, where a fixed low degree p of elements is used (usually p = 1 
or 2) and accuracy is achieved by decreasing the mesh size h. Another class 
of elements for the same problem, the Brezzi-Douglas-Marini (BDM) elements 
(employing fewer degrees of freedom), was introduced in [9]. Like the RT el- 
ements, these, too, have been analyzed in the context of keeping p fixed and 
decreasing h. The error estimates that follow from such analysis usually yield 
a rate of convergence for the relative error bounded by a term of the form Ch', 
where C is a constant independent of h but not p, and y depends upon p 
and the smoothness of the solution. 
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In recent times, there has been a large amount of interest shown in the use 
of the h-version with higher-order elements (p > 3) because of the possible 
advantages of such elements over lower-order elements. For example, in [4], 
several methods have been tested for the rhombic (Kirchhoff) plate problem, and 
one of the conclusions reached is that higher-order elements are more efficient 
and more robust than lower-order elements. In [15], it was shown that in the 
elasticity problem the locking effect (for v , 0.5 ) is completely eliminated 
when p > 4. Other advantages of higher-order elements have been discussed 
in [2]. 

Usual estimates of the form Ch' do not fully reflect the increase in order of 
convergence that may be expected when higher-order elements are used. This is 
because when p is increased, in addition to the exponent of h being increased, 
the constant C, which depends on p, also decreases. Consequently, more 
carefully derived estimates are needed, with the exact dependence of C on p 
being investigated. 

The use of higher-order elements and the dependence of C on p are also im- 
portant in the context of the p- and h-p versions of the finite element method. 
In the p-version, a fixed mesh with constant h is used and accuracy is in- 
creased solely by increasing p . In the h-p version, both h and p are changed. 
Basic approximation results for these methods first appeared in 1981 (in [8] 
and [3], respectively). Since then, they have become quite popular, owing to 
much higher rates of convergence than that possible with the h-version. These 
methods have been implemented for two-dimensional problems in the industrial 
code PROBE (Noetic Technologies, St. Louis). A survey of their theoretical and 
computational properties may be found in [1]. 

From the above discussion, it is clear that several finite element methods that 
have been analyzed in the context of the h-version (with estimates of the form 
Ch7 ) would profit from further analysis, determining exactly how this behavior 
changes when p is increased. In this paper, we are interested in carrying out 
this analysis for some mixed methods, for which convergence depends upon two 
factors-the stability of the subspaces used and their approximation properties. 
Our goal is to investigate the rectangular RT and BDM elements and specifically 
answer the following two questions. 

First, we determine how the stability constants for these spaces behave when 
p is increased. This is necessary to find out whether the p- and the h-p versions 
would be stable if these methods are used. 

Second, we establish rates of convergence for these methods which are uni- 
form in both h and p (with the constant C being independent of both h and 
p ). This gives a more complete picture for the convergence of the h-version 
with high p and also establishes rates of convergence for the p- and h-p ver- 
sions. 

We mention another reference [1 1] where the p-version of a mixed method 
(for Stokes' flow) has been analyzed. The problem considered there is Stokes' 
flow, whereas here we consider the Poisson equation. In that paper, it was found 
that the methods proposed had stability constants which, in general, behaved 
like p ` as p increased (with 1 < ca < 3 for a family of elements analyzed 
in detail). Consequently, the error estimates that follow for the pressure are 
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nonoptimal in p. In contrast, we show that for the RT elements, the stability 
constant is independent of p (as well as h ), while for BDM, the dependence 
is not worse than p ", e arbitrarily small. In ?4 we show how this leads to 
optimal error estimates in both h and p (up to arbitrary e > 0 for p) for both 
the velocity and the displacement. 

2. PRELIMINARY RESULTS 

Let Q be a bounded convex polygonal domain, C R 2, with boundary F. 
We consider the model elliptic second-order problem, 

(2.1) -Au=f inQ, u=O onF. 

To formulate our mixed method, we introduce the gradient of u as a new 
variable a to obtain 

(2.2) -diva = f, a=gradu inQ, u = O on IF. 

An equivalent variational formulation of (2.2) is then obtained by defining the 
spaces 

V = L2(), S = H(div, Q) = {z e (L2(Q))2; dive E L2()} 

and finding (u, a) e V x S satisfying 

(2.3) (a, T), + (u, divT)Q = O VT eS, 

(2.4) (diva, v)Q + (f, v)Q = 0 VV e V, 

where (., .)Q denotes the usual (L2(A))' (n = 1, 2) inner products. The 
boundary condition is built into equation (2.3). We will use I II v and 1 Ls to 
denote the L2(Q) and H(div, Q) norms, respectively. Moreover, I I and 
11 IIr Q will be used to denote the seminorm and norm on (Hr(Q))n , n = 1, 2 
for any region Q. 

(2.3)-(2.4) may be discretized by choosing a pair of finite-dimensional sub- 
spaces VN C V, SN c S and finding (UN, UN) E VN X SN such that 

(2.5) (UN , TN)Q + (UN, divTN)Q =O VTN E SN 

(2.6) (div aNVN)Q + (fV N)Q=2O VVN E VN 

(2.5)-(2.6) will only have a solution when certain compatibility conditions, de- 
scribed later, between VN and SN are satisfied. 

We assume that there is a family { VN x SN} of such spaces, with N being a 
parameter related to the dimensions of VN, SN . The finite element spaces to be 
considered consist of piecewise polynomial spaces defined on grids on Q with 
mesh size h. N will depend on both h and the polynomial degree p used, so 
that N = N(hN, PN). In order to increase accuracy, one employs an extension 
procedure, by which pairs of spaces (VN, SN) with increasing dimension N are 
selected. In the usual extension procedure, the degree of polynomials is kept 
fixed while hN is decreased. We will be interested in analyzing the combined 
effect of changing both hN and PN' either together or separately. We will 
require the following theorem (see [14]). 



4 MANIL SURI 

Theorem 2.1. Let { Vn , SN} be a family of spaces such that: 
(1) For any TN E SN e 

(2.7) (vN 5divTN)Q = 0 VVN E VN => diVTN = 0. 

(2) There exists a = a(N) > 0 such that for any VN E VN, 

(2.8) sup (VN ,div TN)Q > a(N) lAv 
NTNESN HTNIIS 

Then the problem (2.5)-(2.6) has a unique solution, and there exists a constant 
C > 0 independent of N such that 

(2.9) H NHS + 1UNH V C acN){ lS + 1u1V}, 

(2.10) la - NS + u - UN V < inf la -Is + inf lu - V l v NII +IIU- NII <a(N) TESNv V 

Let us now define the RT spaces (denoted by { JN, SN}) and the BDM spaces 

({ VJ7, SN}). Like in [1 1], our analysis will be restricted to the case of parallel- 
ogram elements. Let Q denote the standard square, [-1, 1] x [-1, 1]. For 
Q c R1 or 25 Pk (Q) will denote the set of all polynomials on Q of total 
degree < k . When Q=Q. we will use Pk to denote Pk(Q) . By Pl m, we will 

denote the set of polynomials on Q with degree < I in 4 and degree < m in 
q. Then we define 

(2.11) VkI(Q) = Pk,k 
(2.11) 
(2.12) Sk(Q) = Pk+lk X Pk,k+l' 

(2.13) J2(Q) = 

(2.14) Sk(Q) = (Pk X Pk) D san{(k+l k)T k k+ T 

Note that Pk x Pk c Sk(Q), i = 1 2. 
Now let { TN} be a quasi-uniform family of meshes on Q consisting of 

parallelograms K. hK, PK will denote the diameters of K and of the largest 
circle that can be inscribed in K, respectively. Let hN = maxKET hK. We 
assume there exist constants C1, C2 independent of hN such that for all K e 
TN for all N, 

(2.15) h?C1 K C2 

Further, we assume that each pair K1, K2 e TN has either an entire side or a 
vertex in common, or has empty intersection. 

For K e TN, let FK be the affine invertible mapping such that K = FK(Q), 
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where Bk is a 2 x 2 matrix. With any scalar function v defined on Q (or 
aQ ) we associate the function v defined on K (or AK ) by 

(2.17) v = v oF1 ( = v oFK) . K K 

For vector-valued functions, the correspondence between t defined on Q and 
z defined on K is given by 

(2.18) z =?J BKt oFK (t = JKBK 1 ? FK), 

where JK = det(BK). The one-to-one correspondences v +-+ v and t (z+ T will 
be understood in the sequel. 

The following lemmas follow from Lemmas 2 and 3, respectively, of [14]. 

Lemma 2.1. For any function t e (H1 (Q))2, 

(2.19) (divt, q)Q = (divz, I)K V61 e L2(Q) 

(2.20) j TPds= j - *vbds V~beL2(0Q)a 
AQ AK 

Lemma 2.2. For any integer I > 0, 

(2.21) JtjjQ < Ch'j~lK, 

(2.22) |TIK< Ch- 1, 

where the constant C depends on I but is independent of T, hK. 

(We have used condition (2.15) in (2.21)-(2.22).) 
With K, we now associate the spaces (i = 1, 2) 

(2.23) Sk(K) ={z K , X2 t E Sk(Q)}, 

(2.24) Vk (K) ={v: K R1 5, e VK(Q)}K 

Then, we set, for i= 1, 2, 

(2.25) S {TeS S.K e S(K) VK e TN} C S. 

(2.26) VN= {V e V, V5K e VP (K) VK e TN} C V. 

Note that the inclusion SN C S is equivalent to the condition that the normal 
component of T along any aK must be continuous. 

Since the spaces VN consist of piecewise polynomials on regular quasi-uni- 
form meshes, the following inverse inequality will be true: 

Lemma 2.3. There exists an %o > 0 such that for VN e VN and 0 < ,e <,o, 

H|VNCeQ ? ChN PN %QVNI ,2 5 

where C is a constant independent of hN, PN and VN. 

Proof. The proof follows easily from the separate inverse inequalities in terms 
of hN (see [10]) and in terms of PN (see [8]). o 
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It is easy to see that the above spaces satisfy 

(2.27) div(Si) C , 
so that condition (2.7) of Theorem 2.1 is automatically satisfied. Moreover, it 
has been shown in [14, 9] that (2.8) is satisfied with a(N) > 0 independent of 
hN (but depending possibly on PN )* In order to get our desired convergence 
rate, we must now estimate a(N) in terms of both hN and PN and also estimate 
the approximation properties of our spaces, to be used in (2.9)-(2. 10). Our 
analysis will be facilitated by families of projections 

IN: S -SN and PN V VN 
defined for i = 1 in [14] and i = 2 in [9] such that the following commutative 
property holds: 

(2.28) divoN =o P ? div. 
We now describe the above projections, which are constructed locally on each 

K E TN. PN will simply be the L2 projection satisfying 

(2.29) (v- PNV WN)K = ? VWNeJVP (K), KEE TN 

The following theorem follows from the approximation theory of the h-p ver- 
sion. 

Theorem 2.2. Let PN: V -* VN be defined piecewise over each K E TN by 
(2.29). Then for any v E Hr(Q), r > ?0 

(2.30) liv -PNvl|v < ChiprlvllrQ, 

where 'uI = min(pN + 1, r) and jU2 = min(pN, r) and where C is a constant 
independent of hN, PN and v. 

Proof. Since PNJ is the L2 projection, we known that over each K, 

(2.31) liv PNvll0 K C inf liv - WIIOK ? ChpNrllv llr K 11V ~VIOK< 
CWEJ VN(K) 

1V-W1, 
hl 

by Lemma 4.5 of [5]. (2.30) follows by squaring and summing (2.31) over all 
KE TN. 5 

Remark 2.1. The powers u 1, 5U2 are different in view of the fact that the poly- 
nomials used to define J2 (Q) are of one degree less than those for VP' (Q). 

Now let z be a function in S. The projections HNz are defined locally over 
each K in terms of a projection H' t on the standard square Q (where t 
satisfies (2.18)). Let for k > 1, 

(2.32) ~ 1 2 
(2.32) Mk = Pk-1,k X Pk k-I' Mk = Pk-2 X Pk-2 

where M12 is understood to be empty. Then HP T is defined by the conditions 

(2.33) ((HIT$-t), tN)Q = 0 for all ' e 

(2.34) I tp -T)*Vds=0 forall PN( 
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where (2.34) holds for any side I of Q and v) is the outer normal to OQ. The 
unisolvence of (2.33), (2.34) has been established in [14, 9]. Note that (2.11), 
(2.13), (2.32) imply that grad(VK,(Q)) c Mk and also that v) E Vk(Q) implies 
e) z P;,(') . Hence, for any v e V' (Q), we obtain by (2.33), (2.34) that 

PN 

(2.35) (div(Hi - t), i)Q = f -(HP - t) * VV ds - t-=t gradv)Q =. 

We now define H>1 on Q such that 

(2.36) (rH>T)IK = 1 . 

Then the following holds. 

Theorem 2.3. For T E S, let H>T be defined by (2.33), (2.34), (2.36). Then 
H>T E S' and is uniquely defined. Moreover, 

(2.37) HNT = T for all T e SNe 

(2.38) (div(>T - T), V)Qo = 0 for all v E VN 

Proof. Using (2.35) together with (2.19), and summing over K E TN, gives 
(2.38). Moreover, by (2.20) and (2.34), H> T X v is continuous for any I in the 
triangulation, so that Hl> e SN. Finally, (2.37) follows from the unisolvence 
of (2.33)-(2.34). 0 

Note that (2.38) implies (2.28). In the next section, we derive error estimates 
for IIIHT - TIIS that are uniform in both hN and PN. 

3. ERROR ESTIMATES FOR THE PROJECTIONS IT 

Let I [-1, +1]. Then {Lj(4)}, j = 0, 1, ..., will denote the Legendre 
polynomials on I which are orthogonal in the following sense: 

[+1 2 
(3.1 ) k)Lj() d- = 2j+ 1 if j =k, =0 otherwise. 

For any T E L2(Q), where Q is the standard square I x I, we may expand 
T as 

00 00 

(3.2) T = E E aiJLi(4)Li W 
j=0 z=0 

Then we have, using the orthogonality properties of {Li(4)} and their deriva- 
tives (see [7]), 

00 00o 4a 
(3.3) JITII = _ + 1 _ _ + 1) 

Q ~~j=O i=O k ) J 
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ff~~~s 2 ( 
~~s+t' 2 

II'ri,2 > (I _l 2l-4 )s(-I _ (q O ) d~sdt 

(3.4) a2(1+i 2 2 +2)r ,CE E a 
ii(I 

+i +j) 

j=0 i=o (2i + 1)(2j + 1) 

3.1. The Raviart-Thomas elements. Let T = (z1, T2) e H(div, Q). Then, for 

the RT elements, the projection FIl defined in (2.33)-(2.34) may be written as 

IHt = (1, Tk) e S1(Q), where 

(35) ff(T _l)04;5 d~ = 0, q0ePk-(I)' W ~k(I), 

(3.6) 1 dd = 0, q$EP (I), 4 ( 

(3as) i s e i (3.2() Mo)(reo the = O lynomia E Pk +1 m 
-1 k 

(3.9) | E EbTl)(?l L q)C(q)Ld(?= 0 E Pk)L) - 
-1 

We are interested in estimating ts - 11 We tfi Q. Since fact E Ltha we may 

assume it has the expansion (3.2). Moreover, the polynomial to e L(Q)k may 
be expanded as 

k k+l 

(3.9) TI = bijLi (4)Ljj1 - 
j=o i=o 

Let us calculate the coefficients bij . We first use the fact that the Legendre 
polynomials form an orthogonal basis for Pl m, with respect to the L2 (Q) inner 

product. Taking 0(4) = Li(4), 4'(q) = L1(ii) in (3.5) yields 

(3.10) bi =ai1, 0< i<k-1, 0< j k. 

To calculate bkj and bk+l we use the boundary conditions (3.7). First, 
on the side = -1 , taking C(q) = Ll(q), O < I < k, gives 

+1 k k+l 

- E bijLi(- 1I)Lj(q1) Ll(q1) d r 

kj=0 i=0J +1 00 oo o 
= E EaiJLi(-1)Lj(q)) Ll(q) dq . 

Since Li(-1) = (-1)', this yields (using (3.1) and (3.10)), 

00 

bkl- bk+ 1 = E ail (1) 0 < I < k . 
i=k 
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Similarly, the condition at 4 = + I gives 
00 

bk1+bk+ll =E all , < I0 k, 
i=k 

so that 
00 00 

(3.11) bk1= E Z ak+i,, ' bk+ll 
E 

ak+i, 1 
i=O i=O 

where " stands for summation over even integers and Ej' over odd. 
We will now use (3.9)-(3.1 1) to estimate IITl - I Io Q . By (3.3) we have 

00 00 
4(aij - b 2 (where b.. =0 

? Q j=O i(2i + 1)(2j + 1) for j > k or i > k + 1) 

k 00 k_1k+l 00 (a -b ij)2 

=4 (E+ E ) E+E+ 1 ( +jl(j+1 
(3.12) - 00JE E -- (o k+1 - 2 

4 ~~(a,j1 bi1) 

| E= ~ (2i + 1)(2j + 1) 

(oo k- k 00oo 00 a_ 

+ iSE EE+ E (2i + )i(2j + ,1 
J=k+ Ii=O j=O i=k+2 j=k+1 i=k+2 

Now for r > 0, 
000 2 

4 
00 

aij 
~ i--k+ (2i + 1)(2j + 1) j=k+l i=k+2 

00 00 
a2 ( 

2 
+ i2 +j ) 

(3.1Z) Z~ i-k+2(2i + 1)(2j 1)(1 + k2+k2)r (3.13) J=k+l i=k+2 

C 000 a 2 ( 2+ j2)r 
< - aJ.l 

-k 2rE E (2i + 1 )(2j + 1 ) 

<i2rIIT 1 lr, Q 

using (3.4). Similarly, 
k 00 a 2 k o o a 2 + j2)r 

4<~~~~i < <4T 
i 

(14) iE Ek+ (2i + 1)(2j + 1) 
- 

o i 
E 

(2i + 1)(2j + 1) (I + i2)r (3.14) j=O i=k+2 j=O i=k+2(2+1)2+1) 1+I 

< C 2 

I lTii r,Q 

The term 
k-1 2 

k O ( ij 
k i 

E (2i + 1)(2j + 1) 
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is similarly bounded. We now bound the first term. Let i = k. Then, using 
(3.11), we have 

00 (a kl-bkj) 
2 00 (>iO /"ak 2 

A 4 ajbj < 4 E i=2 ak+i I j) 
E 0 (2k + 1)(2j + 1) - (2k + 1)(2j + 1)- 

j=0 ~~~~~J=0 

Now for r1 > 1/2, 

00 2 00 0 

tE ak~i, < 
2 

aj(I 
+ i2 + j2)r, E (I + i2 2 -ri 

i=2 i=k+2 i=k+2 
00 

Ck- (2r, - ) E 2 (+i2 
2 

j2rl 

i=k+2 

< Ck-(2rIl-1) ij E ~~(2i1+ 1) 
i=k+2 

so that 
00 00 ii 2 

A < 4~ 00 (Zi=2 ak+i j) < 
(2k+ 1) Z (2j+ 1) j=0 

00 00 j),+/ (3.15) < Ck2r Z aij(1 + +j) 

i=0 E= (2i+ 1)(2j+ 1) 
< Ck-2rI 1 I2 

Q = Ck 2(r/ 1/2) K2HrQ 

provided r = r1 + 2 > 1. (3.13)-(3.15) show that for r > 1, 

I1T1 -T1 11oiQ < Ck (r 1/2IITlr Q 

A similar argument may be used to bound IIT- Tk 11, Q. We have therefore 
proven 

Lemma 3.1. Let t E (H r(Q))2, r > 1 . Let HI) = (Tk, T2) e Sk(Q) be defined 
by (3.5)-(3.8). Then 

(3.16) It - H'kTlO Q < Ck /(r/)IIII-rQ 
where C is a constant independent of k and T but depending on r. 

In order to prove a corresponding estimate for HIl (in both hN and PN) 
we need the following lemma. 

Lemma 3.2. Let t E (Hr(Q))2 and T E (Hr(K)) 2, r > 0, be related by (2.18). 
Then 

(3.17) inf Vt- min(k I " <ITrK 
where C IeoQt Ch indep eK +1, kar 

where C depends on r but is independent of hK I k and T. 
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Proof. The above lemma is simply a vector form of Lemma 4.4 proved in [5]. 
The proof follows identically, using the scaling result (2.21) and Theorem 3.1.2 
of [1I0]. El 

We now prove our main estimates for H>1. 

Theorem 3.1. Let T e (Hr(Q))2, r> 1. Let H>: S ISN be as defined in ?2. 
Then 
(3.18) JIT - HI T1, < Chmin(PN+l r)P_ (r- 1/2) 

where C is a constant independent of hN, PN and T but depends upon r. 
Moreover, if div T E Hr(Q), then 

(3.19) IT - H>TIS < Ch*pNj' (Il-T|Ir, Q + || diVzTIrQ), 

where #1 = min(pN + 1, r) and fl,1 = r - 
Proof. Let K C TN. Then we have by (2.37), for any Co E Pk x Pk, 

(3.20) |T-np N|IOQ = II(T -) - N( - 

<p-(r-112)h* min(PN + 1 , r) 1 1T 1r 1 

where we have used Lemmas 3.1 and 3.2. Using (3.20) with (2.22) then gives 

(3.21) IT - ITH110 K CPN(r 1/2)hmin(PN+l r) IT<K 

Squaring (3.21), summing over all K E TN and noting that hK < hN yields 
(3.18). 

To obtain (3.19), we note that by (2.28), 

(3.22) || diVT - div(HNT)l IO = || diVT - Pj(div T)iO Q 

Using Theorem 2.2 gives 

(3.23) diV-T - div(rIT)110 , < Ch"Ip -rIdiVTllrQ - 

Combining (3.23) with (3.18) gives (3.19). o 
3.2. The Brezzi-Douglas-Marini elements. Let t = (T-1, T2) E H(div, Q) be 
given by 

00 00 

(3.24) Tn = E anjL I(@)L(), n = 1, 2. 
j=O i=O 

Then 7kT = (TI, T) E S, (Q) (defined by (2.14)) may be written in the form 

(3.25) Tk = E b Lj(4)Lj(q) + bl+, OL 
O<+j<k 

-c kbo k+ LI ()Lk(1)n 

(3.26) Tk = E~b 2Lj@)Lj(q) - ckbk+l oLk ()Ll(1) 
O<i+j<k 

+b 
2 

Lo(')L 
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where 
leading coefficient of Lk+ 1 2k + 1 

Ck --leading coefficient of Lk k + 1 

satisfies 1 < ck < 2. Using (2.33)-(2.34), we see that (T k, T k) satisfies 

k 
(3.27) f(Ti - Ti)q( , q) d~ dq = 0, 0 E Pk-2(Q) 

together with conditions (3.7)-(3.8). By the orthogonality of Legendre polyno- 
mials, we obtain from (3.27) 

(3.28) bn = a 0n O< i+j< k-2, n = 1, 2 . 

Next, taking C(q) = LI(q) , the conditions (3.7) on the sides I = +1 give 

k-I 00 

(3.29) I b'lLi( 1 ) = Ea alLj(?I1) for I = 15 2, . .. , k - 1,5 
i=O i=O 

k 00 

(3.30) E bILi(?1) + b+,OLklI( 1)= aOLi((?1) for I = 05 
i=O i=O 

00 

(3.31) bkLO(+ 1)-ckb 2k LLI(+ 1)=ZaL(+1) forl=k. 
i=0 

Using (3.28) with n = 1, and the fact that Li(l) = 1, Li(-I) = (-1)', 
(3.29)-(3.31) give respectively 

00 00 

(3.32) bk 11 E= 
/ 
ak Il?I' bk a = LaI1 

i=O i=O 

I = 1 , 2 , . .. , k - 1 , 
00 00 

(3.33) bk10 + b1O= EZ ak 0, bkO =Z E a"?o 
i=o i=o 

00 00 

(3.34) bok = aik bO k+l =- E a- 
Z 

i=O ~~~~~k i=l 

Similarly, the conditions on the sides q = + 1 give 

00 00 

(3.35) b 
2 

l = 
2 2 'i:// a2 (3.35) bz ,k-I-1 =E a1,k-I-l+j5 1 ,k-I E I, k-l+j 5 

j=0 j=0 

1= 1,2,...,k-1, 
00 00 

(3.36) bok- +bo kl = Z 2 
a22 bk = EZ aO k+2 

j=0 j=0 
00 0 oo~~~ 100,2 

(3.37) bko = E akj 
1 bk+lo=--Z akj. 

j=0 k j=1 
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The only unknowns not explicitly solved in the above equations are bI and 
bo2kl. These are given by 

00 00 
1 //1 1 i 2 

bk-1,0 Z ak-l+i,O+ Z akj, 

(3.38) i=O k j=l 

2 
0 

1 
0 

1 

bO,,ki aok-l+j + - aik 
j=O k i=1 

We now use (3.28), (3.32)-(3.38) to estimate the error lIT1 - T kIIOQ. Let 

b1. =0 for those not explicitly specified above. Then we have 
ij 

A=Iz - TiIIOQ = Ei i(2i+l-(2b~l2 1 
k ckb~k~l) 

' i=o i=O 1)(21 + 1) 

(39) E 2+ ) (2 + 1 <E ,2 +1 2J) 
i|jEk5l ( 2ki + 1-)1(<2ij + 1 )kl l 

(2i + k (2i + 1+) 

(a12 (bJ1)2 ?c 1ZZ(2i + 1)2j + LF) (2i +1)(2j + 1 
I~i~j~k-1i k ?li~jk? 

Now for r > 0O 

(a12 (a12 2 2 r 

(ai) < (ai) (I + i + j) 
(3 40E~~- (2i + 1)(2j + 1) + >k (2i + 1)(2j + 1) k2r (3 ) i?I~k-1I i~j~k-I 

< I < C 11,2 
k 2rII1 lrQ - I-2r rII r Q 

Also, we know from (3.32)-(3.38) that for i + j > k - 1 
00 00 

(3.41) Ib'I < Z Ia'I + C11 Z 'IaklI, 
1=1 1=1 

where 
Cij = I for (i, j) = (k - 1,0 ) or (k + 1, 0), 

= 0 otherwise. 
Nowfor r1 > 1/2 (since i+j>k- 1), 

oo 2 oo oo 

1: la' I) 
< 

I> 
1 

2(l + 12 + j2pr j(l + 12 + j2)-r, 

(3.42) I=i a _) 2 (+12+) 

___ (aJ1)2( +2 2r+121/2 
-~rl -1 E(21 + 1) 

Similarly, 
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Hence, we see that by (3.41)-(3.43), 

(b11j)2 

i j-k I(2i + 1)(2j + 1) 

k-i (b,>1_ 2 k-I (b21 2 

Z (2k - 2j - 1)(2j + 1) -Zj (2j + 1) 

(3.44) < C (a~a j ) (I~2y)r~l 
-2r- j (21j+ 1)(2j+ 1) 

+ 
0 (a ,)2(l + k2 + 12)rI+1/2 

1=+ (21 + 1)(2k + 1) f 

< 
C 

- k 2r-2 IltIlr,Q 

where r = r1 + 2 > 1. 
The term 

(bi.)2 

k<i+j<k+1 (2i + 1)(2j + 1) 
may be bounded similarly to (3.44). Hence, by (3.39), (3.40), (3.44) we obtain 
for r> 1, 

(3.45) IIT - T1 Q <k2 II< Ir,Q 

The term lIT2 - Tzi Q 2 can be treated the same way, leading to the following 
lemma. 

Lemma 3.3. Let t E (H (Q)), r > 1 . Let Hlkt = (T1, T2) E S, (Q) be defined 
by (3.27), (3.7)-(3.8). Then 

(3.46) It -_ ktI10 Q < Ck r)IIIIrQ. 
where C is a constant independent of k, T. 

Lemma 3.3 then yields the following theorem, which can be proved the same 
way as Theorem 3.1. 

Theorem 3.2. Let T E (Hr(Q))2 , r > 1. Let HrN: S SN be as defined in ?2. 
Then 

(3.47) JITz- H_ 12 T ?l < Chmin(PN~lr) PN(r) IITIrQ 

where C is a constant independent of hNI PN and T but depends upon r. 
Moreover, if div T E Hr(Q), then 

(3.48) lIT _ HNTIIS < Ch?2p 2(||T diVT 
where Ch N II r1 + and = 

where /12 = min(PN 5r) and l2 = r-1I. 
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4. STABILITY AND CONVERGENCE RESULTS 

In this section, we examine the dependence of the stability constant a(N) = 

a(hN, PN) in (2.8) on hN and PN' when the RT and the BDM spaces are used. 
We also use Theorems 2.1, 3.1 and 3.2 to derive error estimates for the mixed 
method defined by (2.5)-(2.6). 

We first examine the question of stability. 

Theorem 4.1. The spaces { VN/, SN}, i = 1, 2, satisfy condition (2.8) of Theo- 
rem 2.1 with the stability constant a1i(N) = ao(hNN, PN) being given by 

(4.1) a ,(N)> C1, forRTspaces, 

(4.2) a2(N)?> C3 p for BDM spaces, 
1 + C2h pN 

where Ci, i = 1, 2, 3, are constants independent of hNI PN, and e > 0 may 
be chosen to be arbitrarily small. 

Proof. Let VN E VN . In order to establish (2.8), it is sufficient to find TN E 
such that 

(4.3) div TN=VN 

(4.4) ILTNIIS < c1(N) VNIIV 

We first solve the following elliptic problem on Q: 

AU = VN in Q, u =0 on AQ. 

Let T = grad u . Then we have 

(4.5) divT=vN . 

Moreover, since Q is convex, there exists a 0 < e < I such that the following 0 2 
shift theorem holds: 

(4.6) IITII1+ Q?< CIIVNII Q forall0<e<e . 

(Note that VN E vi C HS(Q) for any 0 < s < I .) We now take 

(4.7) T H =noT . 

Then, since div T E VN , (4.3) follows by (2.3 8). Moreover, 

IjTNIIO4Q < ITI11042 + lIT - r>IIO , 
< ||T|1 Q + Chl+p PN 

8-, 
' ITII1+? Q , 

where yI = 2, Y2 = 1 and 0 < c < e0, by (3.18), (3.47). This gives, by (4.6), 

JIT IT11'n +Ch1+8p_(l+6eY1)lVlQ 
(4.8 lINlIO, Q ? llI11 + )'VN1e 

< C(1 + C2h'?6 p(j8I h8 PN)IIVNIIO Q 
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where we have used Lemma 2.3 (with e small enough). Since 11 div TNIIO Q = 

IIVNIIO Q, (4.8) shows that (4.4) holds with 

I 
< C(l + C2hNpN(1/ 2)) < C' for RT, 

? C(1 + C2hNpN) for BDM. 
a2(N)NP 

The assertions (4.1)-(4.2) follow immediately. 5 

We see, therefore, that the RT spaces are stable. For the BDM spaces, (4.2) 
guarantees stability up to an arbitrarily small power pNE. (Obviously, if hNpN 
remains bounded, then in (4.2) we obtain a2(N) > C.) We may now apply 
Theorem 2.1 and obtain the following rates of convergence, using the approxi- 
mation estimates in Theorems 2.2, 3.1 and 3.2. 

Corollary 4.1. Let u be the solution of (2.1), with a = gradu, so that (u, a) E 
V x S satisfy (2.3)-(2.4). Let (uN X ,) aIE Nx SN be the finite element solutions 
corresponding to the RT spaces. Then there exists a constant C independent of 
hN, PN' u such that for r > 1 

(4.9) II1iiS + IIu1IIV ? C{11ullo + 11allo + 11 divallol}, 
I 1c1NNIS +IIUuNIIV N P 

(4~ ~~ 10)1s-a IjSlu-u~l 1v < Ch min(PN+ 1, r)p-(r- 1/2){1ul+ll 1 i1 

Corollary 4.2. Let (u, a) be as in Corollary 4.1 and (utN cN) E VN x SN be the 
finite element solutions corresponding to the BDM spaces. Then there exists a 
constant C independent of hNI PN and u such that for any e > 0, for r > 1, 

(4.11) II2NIIS + IIu<II < Cp'{IIuIIo + I1aloI + || divojl0}, 

(4.12) II - NIIS + IIUNII V -u 

< Chmin(PN r) -(rl){IIuIIr + I||1|r + || div l1r} 

The above estimates are optimal in hN but not in PN. We now show how 
they can be improved in terms of PN to give optimal estimates (up to an arbi- 
trary e > 0). The argument used was first introduced in [8]. 

We first require the following interpolation result. 

Lemma 4.1. For any r > 0, let Xr = Hr(Q) x yr, where yr denotes the 

completion of (CO (Q))2 functions under the following norm: 

Hall2 = IIUII2 + 1 div 112 

Let for q = r1 + 0(r2 - r,), r2 > r > 0, 0 < 0 < 1, fC denote the interpolation 

space [XrI, Xr2]6 using the K-method of interpolation (see [13]). Then 

(4.13) Xq=Xq. 
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Proof. We first show that 

(4.14) Yq = yq 

where yq = [yr, yr2]6. We note that for i = 1, 2, yr1 may be defined as 

f a I a E (HrI())2 5 E r(,)} 

where 0 div e 5((Hr(Q))2, H -1 (Q)) for any r> 0. Moreover, as shown 

below, there exists an operator ' which belongs to Y(Hrl (Q), (H r(Q))2 
for all r > 0 such that 

(4.15) By% = V% EH 
r- 

4). 

Hence, Theorem 14.3 of [13] allows us to interpolate between spaces Yr, and 
obtain (4.14). Then (4.13) follows easily by a standard result on the interpola- 
tion of products of spaces (equation (6.42), Chapter 2 of [13]). 

To define the operator A, we first let j denote an extension of x E Hrl1 (Q) 

(r > 0) to IR2 such that 

(4.16) 1IXIHr-(R 2) ?< CIIIH-1(Q) 

(The details of this extension may be found, for example, in [16].) Next, let ' 

satisfy A,& = on IR2 such that the shift theorem holds. Taking 

5x = gradzblI, 

we see that (4.15) holds, and 

I1grad rI( 2))2 I Hr-1(R2) 2 C I~ IHr1 (Q) 

by (4.16) and 

II' II (Hr(Q))2 = 1 grad ZIQ II (Hr(Q))2 < I grad I I (r(R2))2 

for any r > 0, so that ' E Y((Hr(Q)) 
2 H r- (Q)) as required. E 

We now prove the following theorem. 

Theorem 4.2. Let u be the solution of (2.1) with a = grad u, so that (u, a) E 
VxS satisfy (2.3)-(2.4). Let (ulT, IN) E V1 xSN be thefinite element solutions 
corresponding to the RT spaces. Then, given any e > 0, k > 0, there exists a 
constant C independent of hNI PN' u but depending upon e and k such that 

(4.17) II(J- 
1 

1s+ I u-ul ||v < Ch min(PN+ ,k)p-(k-e) IluIk +I Ijk +11 div ol} 
Proof. We first use (4.9) to obtain the estimate 

(4.18) Ila- oils + I-u 
I 

uIv < Chmin(PN+lO)pO I (u )IX 

where Xr is as defined in Lemma 4.1. Next, given e > 0 k > 0 choose r in 

Corollary 4.1 such that r > k/2e. Then (4.10) states that 

(4.19 ) Il - 11s + 11 u - || V < Chmin(PN+1,r)p(r- 1/2) 1(u5 o)II~r 
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We now interpolate between (4.18) and (4.19) with 0 = k/r so that 0 < 0/2 < 
e. This gives 

Ila- + iIU-u 
I 
TIv < Chmin(PN+l Or) P-(Or-/2) 1I(u, o)IIor, 

'7N N ~~N PN I~~)I < Chmin(PN+l~k)P- (k-e) 
11(U, U)lk 

where we have used Lemma 4.1. This proves the theorem. E 

Remark 4.1. Although the constant C in (4.17) depends on a, Theorem 4.2 
asserts that if one chooses any positive a, no matter how small, and fixes it, then 
one can find a constant C such that (4.17) holds. Hence the rate of convergence 
in PN is optimal up to any arbitrarily small e > 0. 

We can obtain a theorem similar to this for the BDM spaces. The proof is 
essentially the same, except that r must now satisfy r > k/e. 

Theorem 4.3. Let (u, a) be as in Theorem 4.2. Let (U, 
2 

2) EV SN be the 
finite element solutions corresponding to the BDM spaces. Then given any e > 0, 
k > 0, there exists a constant C independent of hNI PN' u but depending upon 
e and k such that 

(4.20) IIv - |ki + I|u-uNIIV < Chmin PN (-IuI|k + Ik'11k + || divojlk} 

Remark 4.2. Theorems 4.2 and 4.3 can now be used to give an estimate for the 
asymptotic rate of convergence when h and p are changed either separately 
or together. It may be observed, for example, that using the h-version with 
PN > 1 changes not only the exponent of hN but can also lead to a substantial 

decrease in the "constant" which decays asymptotically like Cpj-(kc). 
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